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Abstract. In this work we study bond percolation on random causal
triangulation. We show that the phase transition is non-trivial and we
compute a lower and an upper bound for the critical value. Obviously,
the critical value depends strongly on the nature of the underlying graph,
but the critical value is shown to be constant a.s. for the random causal
triangulation ensemble.

1 Introduction

In the study of two dimensional quantum gravity models of discrete random
surfaces appear as a powerful technique....

Percolation is the fundamental stochastic model for spatial disorder. We
consider bond percolation on random causal triangulations. Detailed ac-
counts of the basic theory on Ld = (Zd,Ed) in d ≥ 2 dimensions may be
found in Grimmett, G. R. (1999) and Bollobas, B. and Riordan, O. (2006).
Percolation comes in two forms, bond and site, and we concentrate here on
the bond model....

2 Causal Triangulations Ensemble

Here we start with definition of rooted causal (or Lorentzian) triangulations
of the cylinder C = S× [0,∞], where S is a unite circle. We maintain defini-
tions and denotations of Krikun, M. and Yambartsev, A. (2012). Consider a
connected graph G with countable set of vertices embedded into the cylin-
der C. Any connected component of C \G is called a face. Let the size of a
face be the number of edges incident to it, with the convention that an edge
incident to the same face on both sides counts for two. We then call a face
with size 3 (or 3-sided face) a triangle.

The graph G defines an infinite causal (or Lorentzian) triangulation t of
if (i) all vertices lie in circles S×{j}, j ∈ N∪{0} = {0, 1, . . . }; (ii) each face
is triangle; (iii) each face of t belongs to some strip S× [j, j+1], j = 0, 1, . . . ,
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and has all vertices and exactly one edge on the boundary (S × {j})∪ (S ×
{j + 1}) of the strip S × [j, j + 1]; and (iv) the number of edges on S × {j}
is positive and finite for any j = 0, 1, . . . . See Figure 4 for an example of
Lorenzian triangulation.

We note that two vertices of a triangle on a same circle, say S×{j}, may
coincide (in this case the corresponding edge stretches over the whole circle
S × {j}, i.e. is a loop).

The root in a triangulation t consists of a triangle ∆ of t, called the root
face, with the anti-clockwise ordering on its vertices (o, x, y), where o and x
lie in S × {0} (can coincide) and y belongs to S × {1}. Vertex o is the root
vertex or simply root. The edge (o, x) belong to S × {0}.

Two rooted triangulations, say t and t′, are equivalent if t and t′ are em-
beddings it, it′ of the same graph G and there exists a self-homeomorphism
h : C → C such that hit = it′ . We suppose that the the homeomorphism h
transforms each slice S×{j}, j ∈ N to itself and preserves the root: h sends
the root of t to the root of t′.

The equivalence class of embedded rooted causal (Lorentzian) triangula-
tions we call causal triangulation.

In the same way we also can define a causal triangulation of a cylinder
CN = S × [0, N ].

Let LTN and LT∞ be the sets of all causal triangulations with the sup-
ports CN = S× [0, N ] and C = S× [0,∞), respectively. The number of edges
on the upper boundary S×{N} is not fixed. We introduce a Gibbs measure
on the set LTN as

PN,µ(t) =
1

ZN (µ)
e−µFN (t), (2.1)

where FN (t) is the number of triangles in the firsts N strips of the triangu-
lation t, and ZN (µ) is the partition function.

The measure on the set of infinite triangulations LT∞ is defined by the
weak limit

Pµ := lim
n→∞

PN,µ.

It was shown in Malyshev, V. et. al. (2001) that this limit exists for all
µ ≥ µc := ln 2, and provided some properties of the causal triangulations
under the limit measure Pµ. The probability space (LT∞,F , Pµ) we will call
a causal triangulations ensemble, for any µ ≥ ln 2.

Theorem 2.1. For any n ≥ 0 let kn = kn(t) be the number of the vertices
at the n-th level (on slice S × {n}) in a triangulation t.

a) For µ > ln 2, the sequence {kn} is a positive recurrent Markov chain
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with respect to the limit measure Pµ, with invariant measure

π =
{
π(n) = (1− Λ)2nΛn−1 : n ∈ N

}
,

where Λ(µ) =
[
1−
√
1−4e−2µ

2e−µ

]2
. In addition, the transition of the Markov

chain are given by

P (n, n′) =
n′

n
Λn
′−n−1

(
n+ n′ − 1

n− 1

)
e−µ(n+n

′). (2.2)

b) For µ = ln 2 the sequence {kn} is distributed as the branching process
ξn with a geometric offspring distribution with parameter 1/2, condi-
tioned to non-extinction at infinity, and we obtain

Pµc(kn = m) = lim
N→∞

Pr(ξn = m|ξN > 0) =
mnm−1

(n+ 1)m+1
(2.3)

3 Percolation on Causal Triangulation. Main Results

For any causal triangulation t ∈ LT∞, we define a bond percolation on t
with parameter p ∈ (0, 1). Let us denote the resulting probability measure on

t by P(t)
p , and E(t)

p denotes expectation w.r.t. P(t)
p . We define the percolation

function p→ θ(p) by
θ(t)(p) = P(t)

p (|Co| =∞) (3.1)

where v is an arbitrary vertex, and Co is percolation cluster contained the
root o of the triangulation t.

If θ(t)(p) = 0, then the probability that the root o is inside of an infinite
connected component is 0, therefore it also means that no infinite connected
component exists a.s. On the other hand, if θ(t)(p) > 0 then the proportion
of the vertices in infinite connected components is equals to θ(t)(p), which is
positive, and we say that the system percolates. We define the critical value
on the triangulation t by

pc(t) = inf{p : θ(t)(p) > 0}. (3.2)

For percolation on causal triangulations it is natural to ask whether the
critical value is non-trivial (different from both 0 and 1), and whether it
depends on the triangulation t sampled from distribution Pµ.

In the following sections we show that the critical value obeys a zero-
one law and is constant Pµ-a.s. for any µ ≥ ln 2, and we show that the
critical value in non-trivial only in the case µ = ln 2 Pµ-a.s. These results
are summarized in Theorem 3.1 below.
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Theorem 3.1. For the considered percolation model on causal triangula-
tions the following statements hold.

1. The critical value pc(t) is constant Pµ-a.s.,
2. The critical value satisfy the following relation

pc(t) =

{
1 if µ > ln 2,

0 < pc(t) < 1 if µ = ln 2.
Pµ − a.s. (3.3)

3. If µ = µc, then 1√
21
< pc(t) ≤ 1

2 , Pµc-a.s.

4 Absence of infinite cluster for subcritical causal
triangulations

In this section we prove the first and second statement of Theorem 3.1 for
the subcritical random causal triangulations ensemble (LT∞,F , Pµ), i.e.,
µ > ln 2.

According Theorem 2.1 the sequence {kn}n∈N defines the Markov chain
on the probability space (LT∞,F , Pµ), where kn = kn(t) is the number of
vertices of the triangulation t on slice S × {n}. Let X1 be the first passage
time to state 1 (space contraction) defined by

X1(t) = inf{n > 0 : kn(t) = 1 and kn+1(t) = 1}

where inf ∅ = ∞. We now define inductively the rth passage time Xr to
state 1 by

Xr+1(t) = inf{n ≥ Xr(t) + 2 : kn(t) = 1 and kn+1(t) = 1},

for r = 0, 1, 2, . . . . By Theorem 2.1, for µ > ln 2, the sequence {kn}n∈N is the
positive recurrent Markov chain with the measure Pµ , thus limr→∞Xr(t) =
+∞ Pµ-a.s.

For each N ∈ N, let TN be the number of contractions up to time N ,
which can be written in terms of indicator functions as

TN =

∞∑
k=1

1{Xk≤N}.

By recurrence of the Markov chain {kn}, we have the following result.

Lemma 4.1. For any µ > ln 2 and for all N ≥ 1 the number of contractions
is finite Pµ-a.s., i.e. TN (t) <∞, Pµ-a.s. Moreover, the following limit holds
true:

lim
N→∞

TN =∞ Pµ − a.s.
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Furthermore, by ergodic theorem for Markov chains, we have that

TN (t)

N
→ (1− Λ)2

Λ
e−2µ as N →∞ Pµ − a.s.

(a) (b)

Figure 1 Typicaly path in the case µ > ln 2.

Each causal triangulation t from LT∞ is identified as a consistent se-
quence

t = (t(0), t(1), . . . , t(N), . . . ),

where t(i) is a causal triangulation of the strip S× [i, i+ 1]. The property of
consistency means that for each pair (t(i), t(i+ 1)) every side of a triangle
from t(i) lying in S×{i+ 1} serves as a side of a triangle from t(i+ 1), and
vice versa.

Denote ∂N := S × {N}. Let {0 ↔ ∂N} be the event that there exists an
open path, in the classical bound percolation sense, joining the root vertex
in the first strip to some vertex in ∂N .

Lemma 4.2. For any µ > ln 2 and p ∈ [0, 1)

P(t)
p (0↔ ∂N ) ≤ e−(1−p)2TN (t) Pµ − a.s. (4.1)

Proof. Denote by X1, . . . , XTN the contraction times of triangulation t up
to time N (see Figure 1). We say that a strip t(i) of the triangulation t is
open if there exist at least one open edge connecting S×{i} with S×{i+1}.
Thus, we obtain that following relation

P(t)
p (0↔ ∂N ) ≤ P(t)

p (t(X1) is open, . . . , t(XTN ) is open)

=

TN∏
i=1

P(t)
p (t(Xi) is open) =

(
1− (1− p)2

)TN .
Using the inequality 1− a ≤ e−a, when a ∈ [0, 1), we obtain

P(t)
p (0↔ ∂N ) ≤ e−(1−p)2TN .
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Using Lemma 4.1 and Lemma 4.2, and letting N →∞ in (4.1), we obtain
the following Lemma.

Lemma 4.3. If µ > ln 2, then for all p ∈ [0, 1)

P(t)
p (0↔∞) = 0 Pµ − a.s. (4.2)

Lemma 4.3 implies that the critical value for percolation model on causal
triangulations, when µ > ln 2, is pc = 1. This prove Theorem 3.1 in the
subcritical case.

5 Phase transition for percolation model in the critical case

In this section we prove the third statement of Theorem 3.1.

5.1 Two-dimensional CDT and Galton-Watson trees

Bijection between causal triangulations and planar trees was established in
Malyshev, V. et. al. (2001), see Figure 4. This bijection permit to obtain a
tree parametrization of infinite causal triangulation (see also Durhuus, et al.
(2010)).

Below we briefly sketch this bijection, which also serves as a way to sim-
ulate random causal triangulations.

Given a triangulation t ∈ LTn, define the subgraph τ ⊂ t by taking, for
each vertex v ∈ t, the leftmost edge going from v downwards (see Figure
4). The obtained graph is a spanning forest of t, and connecting all vertices
on the circle S × {0} we obtain a tree τ . Moreover, t can be reconstructed
knowing τ . We call τ the tree parametrization of t. Denote by η this bijection.

Figure 2 Tree parametrization.

According to this bijection the measure Pµc on infinite triangulations will
create a measure ρ∞ on the set of infinite trees. In Malyshev, V. et. al.
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(2001) it was proved that that the measure ρ∞ corresponds to the critical
Galton-Watson process with offspring distribution p = (pk = 1/2k+1, k =
0, 1, . . . ) conditioned to non-extinction at infinity. Moreover, (see, for exam-
ple, Durhuus, B. (2006)) an infinite tree generated by this process belongs
to the set of so-called single spine trees:

(i) it contains a single infinite path, {v0, v1, . . . }, starting at the root ver-
tex v0 = o; this path is called a a spine;

(ii) at each vertex vi of the spine a pair of finite trees (Li, Ri) is attached,
one of each side of the spine;

(iii) the pairs (Li, Ri) are i.i.d. each distributed by critical Galton-Watson
with offspring distribution p.

This representation helps prove that the critical probability is constant al-
most sure according to the measure Pµc .

Note here that the same construction works for any critical Walton-
Watson process: see Lyons, R. et al. (1995) and Geiger, J. (1999).

5.2 Critical value is Constant Pµc a.s.

Consider the critical value pc(t) of the bond percolation model as a function
of t defined on the space (LT∞,F , Pµ). In the above sections we have shown
that pc(t) Pµc-a.s. causal triangulation t.

Lemma 5.1. Let G,G′ be two infinite, locally finite graphs that differ only
by a finite subgraph, i.e. there exist two finite subgraphs H ⊂ G, ′H ⊂ G′,
such that G \H is isomorphic to G′ \H ′. Then pc(G) = pc(G

′).

Proof. Let ϕ : G\H → G′\H ′ be a isomorphism between G\H and G′\H ′.
For each configuration w ∈ {0, 1}EG\H we define the configuration w′ ∈
{0, 1}EG′\H′ as follows: for any e′ ∈ G′ \ H ′ we define w′(e′) = w(φ−1(e′)).
Note that such defined correspondance w ∈ {0, 1}EG\H → w′ ∈ {0, 1}EG′\H′
is a bijection. Thus,

PG
′\H′

p (w′ : w′(ϕ(e)) = 1) = PG\Hp (w : w(e) = 1) = p.

Therefore

ϕ({w : |Cv0(w)| =∞}) = {w′ : |Cϕ(v0)(w
′)| =∞},

and
PG\Hp (w : |Cv0(w)| =∞) = PG

′\H′
p (w′ : |Cϕ(v0)(w

′)| =∞).

Since the events {w : |Cv0(w)| = ∞} and {w′ : |Cϕ(v0)(w′)| = ∞} are
independent of finite subsets, we complete the proof.
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The critical probability pc ≡ pc(t) is a function of t. Given a causal trian-
gulation t, let us consider its Galton-Watson tree parametrization (Li(τ), Ri(τ)),
where τ = η(t). Let

Sπ(t) = (Lπ(i)(t), Rπ(i)(t)),

where π : N→ N is a bijection such that π(n) = n for all but finitely many
n. Define the set of finite permutations of t by S(t) = ∪πSπ(t). The set S(t)
is symmetric for all t ∈ LT∞, i.e. invariant under finite permutations. Thus,
by Hewitt-Savage zero-one law we obtain the following lemma.

Lemma 5.2. Let t be a random causal triangulation. Then

Pµc(S(t)) = 1 Pµc − a.s. t.

Proof of Theorem 3.1. By Lemma 5.2 there exists a subset A ⊂ LT∞ such
that Pµc(S(t)) = 1 for any t ∈ A. We define the set S =

⋂
t∈A S(t). Note

that Pµc(S) = 1, and if τ1, τ2 ∈ P there exists a permutation π such that
t1 = πt2, i.e., t1 and t2 only differ by a finite subgraph. Therefore, by
Lemma 5.1 we conclude that the function pc : LT∞ → [0,∞〉 is constant
Pµc a.s. This completes the proof of the part 1 of Theorem 3.1. �

5.3 The critical value is non-trivial

We prove first that pc(t) > 0 Pµc-a.s. t. We shall show that Eµc(θ
(·)(p)) = 0

whenever p is sufficiently close to 0. Let σ(t)(n) be the number of paths of
t of the length n beginning at the root, and let N (t)(n) be the number of
such paths which are open. Any such path is open with probability pn, so
that

Ep(N (t)(n)) = pnσ(t)(n).

Now, if the root belongs to an infinite open cluster then there exists open
paths of all lengths beginning at the root, so that

θ(t)(p) ≤ Pp(N (t)(n) ≥ 1)

≤ Ep(N (t)(n)) = pnσ(t)(n).

Let X ∼
(

1

2n+1

)
n≥0

, Y ∼
( n

2n+1

)
n≥1

be two random variables.

Let γ ∈ σ(t)(n) and let v0, v1, . . . , vn+1 denote its vertices. The degree di
of the vertex vi is a random variable, and has as distribution X or Y . Thus,
σ(t)(n) ≤

∏n−1
i=0 (2di + 1). Therefore

Eµc(θ
(·)(p)) ≤ pn21n/2.
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Thus, we obtain that θ(t)(p) = 0 Pµc-a.s. t if p < 1/
√

21.
We also show that pc(t) < 1, and we use an approach which is commonly

called a Peierls argument. We shall show that θ(·)(p) > 0 if p is sufficiently
close to 1, Pµc-a.s. causal triangulation t.

**********************************************
home version
**********************************************
For any causal triangulation t let γ∞ ≡ γ∞(t) = (v0, v1, . . . ) be the spine

path of the tree parametrization for t starting at the root v0, such that
vi ∈ S × {i}.

e 
e* 

Figure 3 A dual graph (red) for a causal triangulation (black).

For any finite cluster Co of open edges contained the root there exists a
closed circuit (or contour) consisted of edges on dual graph. Let C(t)(n) be
the set of closed circuits (set of contours) of the length n in t∗, separating
v0 from the infinite part of the graph. Then

Pp(|C0| <∞) ≤
∑
γ

Pp(γ is closed in t∗)

≤
∑
n≥1
|C(t)(n)|(1− p)n.

Lemma 5.3. Let t be a random causal triangulation, and let v0 be the root
vertex of t. There exists p0 < 1 such that for any p ∈ (p0, 1)

Eµc
∑
n≥1
|C(t)(n)|(1− p)n < 1. (5.1)
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Proof. Let C
(t)
R,n ⊂ C(t)(n) be the set of contours of length n which surround

v0 and intersect γ∞ at height R. Note that any such contour does not exist
from the strip [R−n.R+n]. Let also SR,n be the number of particles in the
tree parametrization of t at height R − n which have nonempty offspring
in the generation located at height R + n. Since every contour of C(t)(n),
in order to surround v0, must cross each subtree starting of each vertex of
SR,n, we have

{SR,n > n} ⇒ {γ ∈ C(t)(n)} = ∅.

In the other hand
|C(t)
R,n| ≤ 2n,

since the contours C
(t)
R,n live on the dual graph t∗, which has all vertices of

degree 3, thus there are at most 2n self-avoiding path with a fixed starting
point (which is in our case the intersection withl γ∞). In addition, note that

C(t)(n) = ∪R≥2C(t)
R,n. Utilizing the decomposition

Eµc |C
(t)
R,n| = Eµc [|C

(t)
R,n| | SR,n > n] + Eµc [|C

(t)
R,n| | SR,n ≤ n],

we have the following inequality

Eµc
∑
n≥1
|C(t)(n)|(1− p)n ≤

∑
n≥1

(1− p)n2n
∑
R≥2

Pµc(SR,n ≤ n). (5.2)

Now, let us estimate Pµc(SR,n ≤ n). For this we write this probability as
follow

Pµc(SR,n ≤ n) =
∑
k≥1

Pµc(SR,n ≤ n|kR−n = k)Pµc(kR−n = k).

Note that, if k ≤ n, then Pµc(SR,n ≤ n|kR−n = k) = 1. Thus, we write the
probability Pµc(SR,n ≤ n) as

Pµc(SR,n ≤ n) = Pµc(kR−n ≤ n)+
∑
k>n

Pµc(SR,n ≤ n|kR−n = k)Pµc(kR−n = k).

(5.3)
Utilizing the distribution of kn, respect to the Gibbs measure Pµc , the first
sum above satisfies the inequality

Pµc(kR−n ≤ n) ≤
(

n

R− n

)2

. (5.4)

The second sum in (5.3) can be estimated by estimating the probability
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Figure 4 Construction of the set SR,n in the proof of the Lemma 5.3

.

Pµc(SR,n ≤ n|kR−n = k). For this, note that the probability for a particle
of the branching process ξ to survive up to time 2n is equals 1/(1 + 2n),
thus conditionally on {kR−n = k}, SR,n is stochastically minorated by a bi-
nomial distribution with parameters (kR−n = k, 1

1+2n). Utilizing Hoeffding’s
inequality for binomial distribution we obtain

Pµc(SR,n ≤ n|kR−n = k) < e−2
(k/(2n+1)−n)2

k . (5.5)

Employing the upper bound (5.5), we obtain

Pµc(SR,n ≤ n) ≤
(

n

R− n

)2

+
1

(R− n)2

∑
k>n

ke−2
(k/(2n+1)−n)2

k .

The above sum over k > n is bounded by some absolute constant A1, thus
we obtain the following upper bound for the probability

Pµc(SR,n ≤ n) ≤
(

n

R− n

)2

+
A1

(R− n)2
.

Utilizing this upper bound, we prove that there exist constants A2, A3 such
that

Eµc
∑
n≥1
|C(t)(n)|(1− p)n ≤

∑
n≥1

(2(1− p))n(A2n
2 +A3). (5.6)

Now, we define the function ϕ(p) =
∑

n≥1(2(1 − p))n(A2n
2 + A3). This

function is analytic and decreasing on (1/2, 1], and ϕ(1) = 0. Therefore
there exist p0 ∈ (1/2, 1) such that ϕ(p) < 1 if p ∈ (p0, 1]. This conclude the
proof of the Lemma.
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Finally, in order to prove that pc(t) < 1 Pµc-a.s. t, we utilize the indenti-

ties P(t)
p (|C0| =∞) = 1− P(t)

p (|C0| <∞), and

P(t)
p (|C0| =∞) ≥ 1−

∑
n≥1
|C(t)(n)|(1− p)n.

Employing Lemma 5.3, we prove that Eµc(P
(t)
p (|C0| = ∞)) > 0 for p ∈

(p0, 1], with p0 < 1. This complete the proof of the part 2 of the Theorem
3.1 in the critical case.
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